自编函数实现
1.将数据集分割为特征属性与类别
from numpy import *
import matplotlib.pyplot as plt
#输出特征值矩阵、目标变量
def loadDataSet():
dataMat = []
labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split() #移除空格并分割
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #X0设置为1,X1和X2从文件中获得
labelMat.append(int(lineArr[2]))
return dataMat, labelMat #dataMat 100行3列,labelMat 1行列表
2.sigmoid函数(支持向量的运算)
def sigmoid(inX):
return 1.0/(1+exp(-inX))
3.梯度上升算法得到最优的权系数
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn) #转化为NumPy矩阵类型,100行3列
labelMat = mat(classLabels).transpose() #转化为NumPy矩阵类型并转置,100行1列
m, n = shape(dataMatrix) #获得行数、列数
alpha = 0.001 #设置步长
maxCycles = 500 #迭代步数
weights = ones((n, 1)) #权系数初始化,3行1列
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) #矩阵乘法
error = (labelMat - h) #向量的减法
weights = weights + alpha*dataMatrix.transpose()*error
return weights
4.画分割线与散点图
def plotBestFit(wei):
weights = wei.getA() #将NumPy矩阵转化为NumPy数组,不然下面根据索引提取会越界
# weights = array(wei) #该方式也可以转换
dataMat, labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
#提取属于1类的数据
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 1])
ycord1.append(dataArr[i, 2])
#提取属于0类的数据
else:
xcord2.append(dataArr[i, 1])
ycord2.append(dataArr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1) #设置分类线的范围
y = (-weights[0]-weights[1]*x)/weights[2] #此处x是X1,y是X2, 0=W0*X0+W1*X1+W2*X2 X0=1
ax.plot(x, y)
plt.xlabel('X1')
版权所有:江苏和讯自动化设备有限公司所有 备案号:苏ICP备2022010314号-1
技术支持: 易动力网络